Introduction

When Cisco's Wireless Unified Architecture is deployed, the Lightweight Cisco Aironet Access Points (AP) can use a vendor specific Dynamic Host Control Protocol (DHCP) Option 43 to join specific Wireless LAN Controllers (WLCs) when the WLC is in a different subnet than the LAP. This document describes how to use DHCP Option 43 and provides sample configurations for DHCP Option 43 for lightweight Cisco Aironet (APs) for these DHCP servers:

- Microsoft Windows 2003 Enterprise DHCP Server
- Cisco IOS DHCP Server
- Sun Solaris DHCP Server
- Linux DHCP Server
- Cisco Network Registrar DHCP Server
- Lucent QIP DHCP Server

Refer to Wireless LAN Controller and Lightweight Access Point Basic Configuration Example for information on how to configure an AP to join a WLC.

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:
• Basic knowledge of DHCP
• Knowledge of the Windows DHCP server configuration
• Knowledge of the Sun Solaris DHCP server configuration
• Knowledge of the Linux DHCP server configuration

Components Used

This document is not restricted to specific software and hardware versions.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Conventions

Refer to Cisco Technical Tips Conventions for more information on document conventions.

Vendor Specific DHCP Options

RFC 2132 defines two DHCP Options that are relevant to vendor specific options. They are Option 60 and Option 43. DHCP Option 60 is the Vendor Class Identifier (VCI). The VCI is a text string that uniquely identifies a type of vendor device. Table 1 lists the VCIs used by Cisco access points.

<table>
<thead>
<tr>
<th>Access Point</th>
<th>Vendor Class Identifier (VCI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Aironet 1000 series</td>
<td></td>
</tr>
<tr>
<td>Airespace.AP1200</td>
<td></td>
</tr>
<tr>
<td>Cisco Aironet 1100 series</td>
<td></td>
</tr>
<tr>
<td>Cisco AP c1100</td>
<td></td>
</tr>
<tr>
<td>Cisco Aironet 1130 series</td>
<td></td>
</tr>
<tr>
<td>Cisco AP c1130</td>
<td></td>
</tr>
<tr>
<td>Cisco Aironet 1200 series</td>
<td></td>
</tr>
<tr>
<td>Cisco AP c1200</td>
<td></td>
</tr>
<tr>
<td>Cisco Aironet 1240 series</td>
<td></td>
</tr>
<tr>
<td>Cisco AP c1240</td>
<td></td>
</tr>
<tr>
<td>Cisco Aironet 1250 Series</td>
<td></td>
</tr>
<tr>
<td>Cisco AP c1250</td>
<td></td>
</tr>
<tr>
<td>Cisco Aironet 1300 series</td>
<td></td>
</tr>
</tbody>
</table>
Cisco AP c1300
Cisco Aironet 1500 series
Cisco AP c1500
Cisco AP.OAP1500
Cisco AP.LAP1505
Cisco AP.LAP1510
Cisco AP c1520
Airespace.AP1200
Cisco 3201 Lightweight Access Point
Cisco Bridge/AP/WGB c3201
Cisco 521 Wireless Express Access Point
Cisco AP c520
AP801 (embedded in 86x/88x series ISRs
Cisco AP801

1 Any 1500 Series AP that runs 4.1 software
2 1500 OAP AP that runs 4.0 software
3 1505 Model AP that runs 4.0 software
4 1510 Model AP that runs 4.0 software
5 Any 1500 Series AP that runs 3.2 software

Option 60 is included in the initial DHCP discover message that a DHCP client broadcasts in search of an IP address.

In order to facilitate AP discovery of WLAN controllers that use DHCP Option 43, the DHCP server must be programmed in order to return one or more WLAN controller management interface IP addresses based on the VCI of the AP. In order to do this, program the DHCP server in order to recognize the VCI for each access point type, and then define the vendor specific information.

On the DHCP server, the vendor specific information is mapped to VCI text strings. When the DHCP server sees a recognizable VCI in a DHCP discover from a DHCP client, it returns the mapped vendor specific information in its DHCP offer to the client as DHCP Option 43.

RFC 2132 defines that DHCP servers must return vendor specific information as DHCP Option 43. The RFC allows vendors to define encapsulated vendor-specific sub-option codes between 0 and 255. The sub-options are all included in the DHCP offer as type-length-value (TLV) blocks embedded within Option 43. The definition of the sub-option codes and their related message format is left to the vendors.
When DHCP servers are programmed to offer WLAN Controller IP addresses as Option 43 for Cisco 1000 series APs, the sub-option TLV block is defined in this way:

- **Type** x66 (decimal 102)
- **Length**: A count of the characters of the ASCII string in the Value field. Length must include the commas if there is more than one controller specified, but not a zero-terminator.
- **Value**: A non-zero terminated ASCII string that is a comma-separated list of controllers. No spaces should be embedded in the list.

When DHCP servers are programmed to offer WLAN Controller IP addresses as Option 43 for Cisco Aironet 1130, 1200, and/or 1240 series access points, the sub-option TLV block is defined in this way:

- **Type** xf1 (decimal 241)
- **Length**: Number of controller IP addresses * 4
- **Value**: List of the WLC management interfaces, typically translated to hexadecimal values

The semantics of DHCP server configuration vary based on the DHCP server vendor. This document contains specific instructions on the Microsoft DHCP server, Cisco IOS DHCP server, Sun Solaris DHCP server, Linux DHCP server and Cisco Network Registrar DHCP server. For other DHCP server products, consult the vendor documentation for instructions on vendor specific options.

Microsoft DHCP Server

This section describes the configurations necessary on the Microsoft DHCP server in order to use DHCP Option 43 for WLAN Controller discovery.

Cisco 1000 Series APs

This section describes how a Windows DHCP server is configured in order to return vendor specific information to Cisco 1000 APs. You need to know this key information:

- Vendor Class Identifier (VCI)
- Option 43 sub-option code
- Management IP address(es) of WLAN controller(s)

The VCI for a Cisco 1000 series AP is always **Airespace.AP1200**. As stated, the Option 43 sub-option code for the Cisco 1000 series access points is type 102 (0x66). The example configurations are done with the Microsoft Management Console (MMC) utility. You can also use the DHCP Server Utility. The steps are virtually identical.

1. Create a new vendor class in order to program the DHCP server to recognize the VCI **Airespace.AP1200**. In the MMC, right-click the DHCP server icon, and choose **Define Vendor Classes**.
2. Click **Add** in order to create the new class.

3. Enter a value for the **Display Name**. In this example, **Airespace** is used as the Display Name. Also, add a short description of the vendor class in the **Description** field. Add the Vendor Class Identifier string. In order to do this, click the ASCII field, and type in the appropriate value, in this case **Airespace.AP1200**. Click **OK**.
4. The new class is created. Click **Close**.

5. Add an entry for the WLAN controller sub-option in the **Predefined Options** for the newly created Vendor Class. This is where you define the sub-option code type and the data format that is used to deliver the vendor specific information to the APs. In order to create a Predefined Option, right click server icon, and choose **Set Predefined Options**.
6. A new window opens. Set the Option class to the value you configured for the vendor class. In this example, it is Airespace. Click Add in order to define the option code.

7. The Option Type box appears. In the Name field, enter a descriptive string value, for example, Airespace IP provision. Choose Binary as the Data Type. In the Code field, enter the sub-option value 102. Enter a Description, if desired. Click OK.
8. The new Predefined Option appears. Click OK. This completes the creation of the Vendor class and sub-option type needed in order to support controller discovery.

9. Define the appropriate value for the DHCP scope the APs use. Navigate to the appropriate DHCP scope for the APs. Right-click the Server Options folder under the DHCP scope, and choose Configure Options.

10. The Scope Options box appears. Click the Advanced tab. Choose the Vendor Class that you plan to use, in this case, Airespace.

11. Choose the predefined 102 sub-option to assign to this scope. In the Data Entry area, enter the controller management IP address(es) to return to the APs in the ASCII section. This is a comma delimited list. There is a period (.) in the initial empty Data Entry area. Make sure you remove this period from the list of IP addresses added in the data entry area.
12. This is an example of the results. Repeat these steps for each DHCP scope.
Lightweight Cisco Aironet 1130, 1240, and 1200 Series APs

This section shows how the Windows DHCP server is configured in order to return vendor specific information to the other lightweight Cisco Aironet series APs. You need to know this key information:

- Vendor Class Identifier (VCI)
- Option 43 sub-option code
- Management IP address(es) of WLAN controller(s)

The VCI for a lightweight Cisco Aironet series access point is specific to each model type. In order to support more than one AP model, a Vendor Class must be created for each model type. The Option 43 sub-option code for the other Cisco Aironet series access points is type 241 (0xf1).

1. In order to configure these options in the Windows DHCP server, open the DHCP Server Administration Tool or MMC. Right-click the DHCP root, and then choose **Define Vendor Classes**.

2. The DHCP Vendor Classes utility appears. Click **Add**.
3. A New Class configuration box appears. Enter a value for the Display Name field, for example, Cisco Aironet 1130 AP, and an appropriate description. Click the ASCII Section and enter the appropriate string value for the Vendor Class Identifier. Click OK. Then, click Close on the DHCP Vendor Classes window.

4. Add an entry for the WLAN controller sub-type as a pre-defined option configured for the Vendor Class. Right-click the DHCP Server Root, and then choose Set Predefined Options.

5. Choose the newly created Vendor Option Class in the Option Class field, and then click Add.

6. The Option Type box appears. In the Name field, enter a string value, for example, Option 43. Choose IP Address as the Data Type. Check the Array check box. In the Code field, enter the sub-option code value 241 (0xf1). Enter a Description if desired. Click OK.

7. The Vendor Class and sub-option are now programmed into the DHCP server. Now, the vendor specific information must be defined for the AP DHCP scope. Choose the appropriate DHCP scope. Right-click Scope Options, and choose Configure Options.

8. Click the Advanced tab. Choose the Vendor Class you previously defined. Check the 241 Option 43 check box, and then enter each WLC management interface IP address. Click OK.
A Vendor Class and sub-options must be defined for each type of lightweight Cisco Aironet AP. Vendor specific information must also be defined for each vendor class in each DHCP scope.

Cisco IOS DHCP Server

Cisco Aironet 1130, 1200, 1240 APs

The Cisco IOS DHCP server only allows Option 43 definitions for one device type for each DHCP address pool, so only one AP type can be supported for each DHCP address pool. Complete these steps in order to configure DHCP Option 43 for lightweight Cisco Aironet access points in the embedded Cisco IOS DHCP server:

1. Enter configuration mode at the Cisco IOS command line interface (CLI).
2. Create the DHCP pool, which includes the necessary parameters, such as the default router and server name. This is an example DHCP scope:

   ```
   ip dhcp pool <pool name>
   network <ip network> <netmask>
   default-router <default-router IP address>
   dns-server <dns server IP address>
   ```

3. Add the Option 60 line with this syntax:

   ```
   option 60 ascii "VCI string of the AP"
   ```

 Note: Avoid raw DHCP Option 43 without the specification of a VCI if possible. Raw DHCP Option 43 limits the DHCP server to support a single device type for vendor specific information for each DHCP scope. Also, every DHCP client receives the Option 43 values in a DHCP Offer, regardless of whether the values are relevant to the device.
4. For the VCI string, use the value from Table 1. The quotation marks must be included.
5. Add the Option 43 line with this syntax:

```
option 43 hex <hexadecimal string>
```

The hexadecimal string in Step 4 is assembled as a sequence of the TLV values for the Option 43 sub-option: Type + Length + Value. **Type** is always the sub-option code `0xf1`. **Length** is the number of controller management IP addresses times 4 in hex. **Value** is the IP address of the controller listed sequentially in hex.

For example, suppose there are two controllers with management interface IP addresses, 192.168.10.5 and 192.168.10.20. The type is `0xf1`. The length is `2 * 4 = 8 = 0x08`. The IP addresses translate to `c0a80a05` (192.168.10.5) and `c0a80a14` (192.168.10.20). When the string is assembled, it yields `f108c0a80a05c0a80a14`. The Cisco IOS command that is added to the DHCP scope is:

```
option 43 hex f108c0a80a05c0a80a14
```

Cisco Aironet 1000 Series APs

The Cisco IOS DHCP server only allows Option 43 definitions for one device type for each DHCP address pool, so only one AP type can be supported for each DHCP address pool.

Complete these steps in order to configure DHCP Option 43 for lightweight Cisco Aironet access points in the embedded Cisco IOS DHCP server:

1. Enter configuration mode at the Cisco IOS CLI.
2. Create the DHCP pool, which includes the necessary parameters, such as default router and server name. This is an example DHCP scope:

```
  ip dhcp pool <pool name>
  network <ip network> <netmask>
  default-router <default-router IP address>
  dns-server <dns server IP address>
```

3. Add the Option 60 line with this syntax:

```
option 60 ascii "Airespace.AP1200"
```

The quotation marks must be included.

4. Add the Option 43 line with this syntax:

```
option 43 ascii "Comma separated IP address list"
```

Note: The quotation marks must be included. No sub-option value needs to be defined in the Cisco IOS DHCP server for Cisco 1000 series access points.

For example, if you configure Option 43 for Cisco 1000 series APs with the controller IP Management IP addresses 192.168.10.5 and 192.168.10.20 add this line to the DHCP pool in the Cisco IOS CLI:

```
option 43 ascii "192.168.10.5,192.168.10.20"
```

Note: You must use the management interface of the WLAN controller. The Cisco IOS DHCP server is limited to one Option 43 for each DHCP pool, so you can only configure a DHCP scope for a single access point type.
Sun Solaris DHCP Server

This section contains information on how the Sun Solaris DHCP server is configured in order to return vendor specific information to lightweight Cisco Aironet series APs.

allow bootp;
option space Cisco_LWAPP_AP;
option Cisco_LWAPP_AP.server-address code 43 = string;

subnet 192.168.10.0 netmask 255.255.255.0 {
 authoritative;
 option routers 192.168.10.1;
 option subnet-mask 255.255.255.0;
 option domain-name "cisco.com";
 option domain-name-servers 192.168.10.2, 192.168.10.3;
 range dynamic-bootp 192.168.10.11 192.168.10.254;
 default-lease-time 86400;
}

!--- This section provides for legacy
!--- APs--substitute the IP addresses in text

class " Airespace 1200" {
 match if option vendor-class-identifier = " Airespace 1200";
 option vendor-class-identifier " Airespace 1200";
 vendor-option-space Cisco_LWAPP_AP;
 option Cisco_LWAPP_AP.server-address "192.168.10.5";
}

class " Airespace.AP1200" {
 match if option vendor-class-identifier = " Airespace.AP1200";
 option vendor-class-identifier " Airespace 1200";
 vendor-option-space Cisco_LWAPP_AP;
 option Cisco_LWAPP_AP.server-address "192.168.10.5";
}

!--- This section provides for APs converted to LWAPP and Cisco LAP models.
!--- Cisco Aironet APs use the type-length-value (TLV) format for DHCP
!--- Option 43. DHCP servers must be programmed to return the option based
!--- on the APs DHCP Vendor Class Identifier (VCI) string (DHCP Option 60).
!--- The format of the TLV block is:
!--- Type: 0xf1 (decimal 241)
!--- Length: Number of controller IP addresses * 4 = 1*4 = 4 (or 0x04)
!--- Value: List of WLC Management interface IP addresses converted to hex
!--- These samples show 1 controller IP Managementaddress,
!--- 192.168.10.5 (or c0:a8:0a:05)

class "Cisco AP c1200" {
 match if option vendor-class-identifier = "Cisco AP c1200";
 option vendor-class-identifier "Cisco AP c1200";
 vendor-option-space Cisco_LWAPP_AP;
 option Cisco_LWAPP_AP.server-address f1:04:c0:a8:0a:05;
}

class "Cisco AP c1130" {
 match if option vendor-class-identifier = "Cisco AP c1130";
 option vendor-class-identifier "Cisco AP c1130";
 vendor-option-space Cisco_LWAPP_AP;
 option Cisco_LWAPP_AP.server-address f1:04:c0:a8:0a:05;
}

class "Cisco AP c1240" {
 match if option vendor-class-identifier = "Cisco AP c1240";
 option vendor-class-identifier "Cisco AP c1240";
}
Linux DHCP Server

This section contains information on how the Linux DHCP server is configured in order to return vendor specific information to lightweight Cisco Aironet series APs.

```
vendor-option-space Cisco_LWAPP_AP;
option Cisco_LWAPP_AP.server-address "f1:04:c0:a8:f7:05";

subnet 192.168.247.0 netmask 255.255.255.0 {
    authoritative;
    option routers 192.168.247.1;
    option subnet-mask 255.255.255.0;
    option domain-name "cisco.com";
    option domain-name-servers 192.168.247.2, 192.168.247.3;
    option opt-43 = "192.168.247.5";
    default-lease-time 300;
}

class "Cisco AP c1200" {
    match if option vendor-class-identifier = "Cisco AP c1200";
    option vendor-class-identifier "Cisco AP c1200";
    vendor-option-space Cisco_LWAPP_AP;
    option Cisco_LWAPP_AP.server-address "f1:04:c0:a8:f7:05";
}

class "Cisco AP c1130" {
    match if option vendor-class-identifier = "Cisco AP c1130";
    option vendor-class-identifier "Cisco AP c1130";
    vendor-option-space Cisco_LWAPP_AP;
    option Cisco_LWAPP_AP.server-address "f1:04:c0:a8:f7:05";
}

class "Cisco AP c1240" {
    match if option vendor-class-identifier = "Cisco AP c1240";
    option vendor-class-identifier "Cisco AP c1240";
    vendor-option-space Cisco_LWAPP_AP;
    option Cisco_LWAPP_AP.server-address "f1:04:c0:a8:f7:05";
}

class "Airespace 1200" {
    match if option vendor-class-identifier = "Airespace 1200";
    option vendor-class-identifier "Airespace 1200";
    vendor-option-space Cisco_LWAPP_AP;
    option Cisco_LWAPP_AP.server-address "192.168.247.5";
}

class "Airespace.AP1200" {
    match if option vendor-class-identifier = "Airespace.AP1200";
    option vendor-class-identifier "Airespace 1200";
    vendor-option-space Cisco_LWAPP_AP;
    option Cisco_LWAPP_AP.server-address "192.168.247.5";
}
```

Cisco Network Registrar DHCP Server

The Cisco Network Registrar DHCP server supports Vendor Specific attributes. However, the configuration of these attributes is not possible with the graphical interface. The CLI must be used.
Complete these configuration steps in order to support L3–LWAPP Discovery with DHCP Option 43:

Note: The CLI Command tool can be found in the Network registrar directory: C:\Program Files\Network Registrar\BIN\ nrcmd.bat

1. Log into the DHCP server. Complete these steps:
   ```
   username: admin
   password: 
   100 Ok
   session:
     cluster = localhost
     default-format = user
     user-name = admin
     visibility = 5
   nrcmd>
   ```

2. Create the Vendor Class Identifier for Cisco AP1000 Series APs:
   ```
   nrcmd> vendor-option airespace create Airespace.AP1200
   100 Ok
   airespace:
     name = airespace
     read-only = disabled
     vendor-class-id = Airespace.AP1200
   ```

 Create the Vendor Class Identifier for Cisco AP1200 Series APs:
   ```
   nrcmd> vendor-option aironet1200 create "Cisco AP c1200"
   100 Ok
   aironet1200:
     name = aironet
     read-only = disabled
     vendor-class-id = Cisco AP c1200
   ```

 Note: For other models of LAP, replace the vendor–class–id parameter with the specific VCI string from Table 1.

3. Associate the values that can be sent in the DHCP Offer by the server when it receives a request with Option 60 set to Airespace.AP1200. The DHCP Option 43 can support multiple values in the same Option 43 field. These options need to be identified individually by a subtype.

 In this case, only one value is required, without any subtype. However, the CNR configuration requires that you create a subtype option:

 For Cisco AP1000 Series APs:
   ```
   nrcmd>vendor-option airespace definesuboption controller_ip 1 BYTE_ARRAY
   no-suboption-opcode,no-suboption-len
   100 Ok
   controller_ip(1) : byte_array(no-suboption-opcode,no-suboption-len)
   ```

 For Cisco AP1200 Series APs:
   ```
   nrcmd>vendor-option aironet1200 definesuboption controller_ip 241 IPADDR_ARRAY
   100 Ok
   Controller_ip(241) : ipaddr_array
   ```
   ```
   vendor-option aironet1200 enable read-only
   100 Ok
   read-only=enabled
   nrcmd>policy system_default_policy setVendorOption aironet1200
   ```
controller_ip 1.2.3.4,2.3.4.5
100 Ok
aironet1200 controller_ip[0] (241) IPADDR_ARRAY(1) = 1.2.3.4,2.3.4.5
4. However, in order to hide the subtype feature and send only a row string (BYTE_ARRAY) with the IP values, CNR supports specific flags in order to remove the subtype ids and length. These are no-suboption-opcode and no-suboption-len flags.

For Cisco AP1000 Series APs:

```
nrcmd> vendor-option list
100 Ok
airespace:
    name = airespace
    read-only = disabled
    vendor-class-id = Airespace.AP1200

nrcmd> vendor-option airespace listsuboptions
100 Ok
    controller_ip(241) : byte_array(no-suboption-opcode,no-suboption-len)
```

For Cisco AP1200 Series APs:

```
nrcmd> vendor-option list
100 Ok
airespace:
    name = aironet1200
    read-only = enabled
    vendor-class-id = aironet1200

nrcmd> vendor-option aironet1200 listsuboptions
100 Ok
    controller_ip(241) : ipaddr_array(no-suboption-opcode,no-suboption-len)
```

5. Associate values based on the DHCP pools:

For Cisco AP1000 Series APs:

```
nrcmd> policy VLAN-52 setvendoroption airespace controller_ip
100 Ok
airespace controller_ip[0] (1) BYTE_ARRAY(1) =
```

For Cisco AP1200 Series APs:

```
nrcmd> policy system_default_policy setVendorOption aironet1200
controller_ip 1.2.3.4,2.3.4.5
100 Ok
aironet1200 controller_ip[0] (241) IPADDR_ARRAY(1) = 1.2.3.4,2.3.4.5
```

In this example, the DHCP Pool named VLAN-52, which is already defined in CNR by the graphical interface, is configured with Option 43 10.150.1.15,10.150.50.15 when it receives a request from an Airespace.AP1200 device.

6. Finally, save the DHCP configuration and reload.

```
nrcmd> save
100 Ok
```

```
nrcmd> dhcp reload
```
Refer to Managing Advanced DHCP Server Properties for more information on Vendor-Options configurations on a Cisco CNR DHCP server.

Lucent QIP DHCP Server

This section provides a few tips for how to configure the Lucent QIP DHCP server in order to return vendor specific information to lightweight Cisco Aironet series APs.

Note: For complete information and the steps involved, refer to the documentation provided by the vendor.

The DHCP Option 43 can contain any vendor specific information. The DHCP server passes this information in the form of a hex string to the clients that receive the DHCP offer.

On the Lucent QIP DHCP server, the vendor specific information can be provided on the **DHCP Option Template—Modify** page. You see the **Active Options** in this screen on the right side. Choose **Vendor Specific Options** and enter the information in the Value field, as shown.

![DHCP Option Template - Modify](image)

In order to include the Controller IP addresses in the DHCP option 43 message, enter the information to the DHCP Option template in QIP as a single hex value: \[ip hex\]

In order to send more than one IP address with DHCP Option 43, enter the information to the DHCP Option template in QIP as a single hex value: \[ip hex ip hex\] and not \[ip hex],[ip hex\]. In this case, the comma in the middle causes problems for DHCP to parse the string passed from QIP.

For example, suppose there are two controllers with management interface IP addresses, 192.168.10.5 and 192.168.10.20. The type is 0xf1. The length is 2 * 4 = 8 = 0x08. The IP addresses translate to c0a80a05 (192.168.10.5) and c0a80a14 (192.168.10.20). When the string is assembled, it yields f108c0a80a05c0a80a14. On the Lucent QIP DHCP server, the hex string that needs to be added to the DHCP scope is:

\[f108c0a80a05c0a80a14\]
The hex string must be given within square brackets. The square brackets are mandatory. Once the DHCP option 43 is modified to reflect this value, the LAPs are able to find and register with the controller.

Verify

Use this section in order to verify your configuration.

If you use a Cisco IOS DHCP server, issue the `show ip dhcp binding` command in order to view the list of the DHCP addresses assigned to DHCP clients. Here is an example:

```
2800-ISR-TWEB#show ip dhcp binding
```

```
Bindings from all pools not associated with VRF:
IP address          Client-ID/              Lease expiration        Type
Hardware address/
User name
192.168.25.1        000b.855b.fbd0          Jun 29 2007 11:49 AM    Automatic
```

On the WLC CLI, you can issue the `show ap summary` command in order to verify that the APs registered with the WLC. Here is an example:

```
((Cisco Controller) > show ap summary
```

```
AP Name        Slots  AP Model   Ethernet MAC       Location          Port
−−−−−−−−−−−−−  −−−−−  −−−−−−−−−  −−−−−−−−−−−−−−−−−  −−−−−−−−−−−−−−−−  −−−−
ap:5b:fb:d0    2      AP1010     00:0b:85:5b:fb:d0  default_location  1
```

If you have Wireless LANs configured, you can issue the `show client summary` command in order to see the clients that are registered with the WLC:

```
(Cisco Controller) > show client summary
```

```
Number of Clients................................ 1
MAC Address        AP Name        Status         WLAN  Auth  Protocol  Port
−−−−−−−−−−−−−−−−−  −−−−−−−−−−−−−  −−−−−−−−−−−−−−−−  −−−−  −−−−  −−−−−−−−  −−−−
00:40:96:a1:45:42  ap:64:a3:a0    Associated     4     Yes   802.11a   1
```

Troubleshoot

Use this section in order to troubleshoot your configuration.

Issue the `debug dhcp message enable` command on the WLC in order to view the sequence of events that occur between the DHCP server and client. Here is an example:

```
(Cisco Controller) > Thu Jun 28 17:07:53 2007: 00:0b:85:5b:fb:d0 dhcp option len, including the magic cookie = 38
Thu Jun 28 17:07:53 2007: 00:0b:85:5b:fb:d0 dhcp option: received DHCP DISCOVER msg
Thu Jun 28 17:07:53 2007: 00:0b:85:5b:fb:d0 dhcp option: skipping option 57, len 2
Thu Jun 28 17:07:53 2007: 00:0b:85:5b:fb:d0 dhcp option: skipping option 55, len 6
Thu Jun 28 17:07:53 2007: 00:0b:85:5b:fb:d0 dhcp option: vendor class id = Airespace.AP1200 (len 16)
Thu Jun 28 17:07:53 2007: 00:0b:85:5b:fb:d0 dhcpParseOptions: options end, len 38, actual 64
Thu Jun 28 17:07:53 2007: dhcppd: sending 300 bytes raw
0.0.0.0.0.0.68 -> 10.77.244.212:1067
Thu Jun 28 17:07:53 2007: dhcppd: Received 300 byte dhcp packet from 0x4f4d0a 10.77.244.212:68
Thu Jun 28 17:07:58 2007: 00:0b:85:5b:fb:d0 dhcp option len, including
```
This is **debug lwapp packet enable** command output from the WLC that indicates that DHCP option 43 is used as the discovery method in order to discover WLC IP addresses:

```
Thu Jun 28 17:51:47 2007: Received LWAPP DISCOVERY REQUEST from AP 00:0b:85:5b:fb:d0 to 00:0b:85:33:84:a0 on port '1'
Thu Jun 28 17:51:47 2007: Successful transmission of LWAPP Discovery−Response to AP 00:0b:85:5b:fb:d0 on Port 1
Thu Jun 28 19:22:39 2007:
```

The value of the IE 58 parameter indicates the discovery type. For DCHP Option 43 it is 3.

If you use the Cisco IOS DHCP server on the router, you can issue the **debug dhcp detail** command and the **debug ip dhcp server events** command in order to view the DHCP client and server activity. Here is an example from the **debug ip dhcp server events** command:

```
*Jun 28 11:49:33.107: DHCPD: Sending notification of DISCOVER:
*Jun 28 11:49:33.107: DHCPD: address 192.168.25.1 mask 255.255.255.0
*Jun 28 11:49:33.107: DHCPD: htype 1 chaddr 000b.855b.fbd0
*Jun 28 11:49:38.603: DHCPD: Sending notification of ASSIGNMENT:
*Jun 28 11:49:38.603: DHCPD: address 192.168.25.1 mask 255.255.255.0
*Jun 28 11:49:38.603: DHCPD: htype 1 chaddr 000b.855b.fbd0
*Jun 28 11:49:38.603: DHCPD: lease time remaining (secs) = 86400
*Jun 28 11:49:38.603: DHCPD: lease time remaining (secs) = 86400
```

Issue the **show ip dhcp binding** command in order to view the list of the DHCP addresses assigned to DHCP clients.

```
2800−ISR−TSWEB#show ip dhcp binding

Bindings from all pools not associated with VRF:
IP address  Client-ID/ Hardware address/ Lease expiration Type
192.168.25.1 000b.855b.fbd0 Jun 29 2007 11:49 AM Automatic

```
NetPro Discussion Forums – Featured Conversations

Networking Professionals Connection is a forum for networking professionals to share questions, suggestions, and information about networking solutions, products, and technologies. The featured links are some of the most recent conversations available in this technology.

<table>
<thead>
<tr>
<th>NetPro Discussion Forums – Featured Conversations for Wireless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless – Mobility: WLAN Radio Standards</td>
</tr>
<tr>
<td>Wireless – Mobility: Security and Network Management</td>
</tr>
<tr>
<td>Wireless – Mobility: Getting Started with Wireless</td>
</tr>
<tr>
<td>Wireless – Mobility: General</td>
</tr>
</tbody>
</table>

Related Information

- Upgrading Autonomous Cisco Aironet Access Points to Lightweight Mode
- Deploying Cisco 440X Series Wireless LAN Controllers
- Wireless Support Page
- Technical Support & Documentation – Cisco Systems

Updated: Jul 31, 2007
Document ID: 97066