Computer networks and standardisation*

Damien Saucez (damien.saucez@inria.fr)
Inria

September 22nd 2016

* based on http://www.ietf.org/edu/process-oriented-tutorials.html#newcomers
Computer networks

- Network:
 - set of nodes (e.g., hosts, routers) exchanging information and interconnected with links.
 - Information are exchanged according to a set of common communication rules.
Communication Protocols*

- Set of rules to allow entities to exchange information.

- Protocols define:
 - syntax (e.g., data format),
 - semantic,
 - operations (e.g., error recovery).

- Independent of the implementation.

* Inspired from https://en.wikipedia.org/wiki/Communications_protocol
Communication Protocols*

- Set of rules to allow entities to exchange informations.
- Protocols define:
 - operations (e.g., error recovery).
 - Independent of the implementation.

* Need of a reference for these conventions.

* Inspired from https://en.wikipedia.org/wiki/Communications_protocol
Standards*

- A **standard** is a reference document officially supported by a **standard developing organization (SDO)**.

 - SDO: organization in charge of producing and managing standards and their revisions.

- **De facto** standards are products/rules implicitly accepted by the market (e.g., MS Word format).

The SDO of the Internet technologies

- Internet Engineering Task Force (IETF)
 - formed in 1986 (expansion of ARPANET).
 - Open: not owned, directed, approved, or funded by a government.
 - IETF is not a legal entity, it is an organised activity.

- Group of people: attendees are considered as individuals, not by their company.
The IETF SDO

- No membership, just participants.
- All decisions base on consensus.
 - No need of unanimity.
 - No voting (no count) because no constituency.
- Discussion to resolve issues.
- All decisions verified on the public mailing lists, open for comments.
The IETF SDO

- No membership, just participants.
- All decisions base on **consensus**.

“Rough consensus and running code”

- Discussion to resolve issues.
- All decisions verified on the public mailing lists, open for comments.
Role of IETF

- Develop and maintain standards used to make the Internet or to provide services over the Internet.

- Focus on technique (functionality, scaling, operations).

- Economics, politics, or laws matters are not discussed at IETF.

- Published in RFCs.

- IETF does not work on physical layers (e.g., IEEE 802.11) neither display or rendering (e.g., CSS).
IETF “workers”

- Anybody! (open and free)
- Document editors.
- Working group chairs.
- Area Directors (ADs).
- IETF Chair.
- Internet Engineering Steering Group (IESG)
 - ADs + IETF chair.
- Internet Architecture Board (IAB).
IETF decomposition in Working Areas

- Standardization efforts grouped in 7 specialised working areas.
 - Decomposed in many Working Groups (WG)
 - working on a specific problem of the area.
 - Lead by up to 3 Area Directors (ADs)
 - setting direction in Area,
 - managing process in Area,
 - review working group documents prior to IESG review.
Working Areas

- Applications and Real-Time Area (art)
 - standards for applications using the Internet technology (e.g., email, HTTP, MIME types, codecs).

- Internet Area (int)
 - deals with the IP layer (IPv4, IPv6, DNS, DHCP, VPN…) and adaptation to new link layers.

- Transport and Services Area (tsv)
 - deals with data transport questions (e.g., UDP, TCP, DiffServ, NAT…)
Working Areas (contd.)

- Routing Area (rtg)
 - works on the general problem of routing (e.g., OSPF, BGP…)

- Security Area (sec)
 - deals with security questions (e.g., confidentiality, authentication…)

- Operations and Management Area (ops)
 - deals with operational considerations (e.g., SNMP, NETCONF).

- General Area (gen)
 - supports, updates and maintains the IETF standards development process.
Working Groups (WG)

- “The Place” where work is really done,
 - mostly via the WG mailing list,
 - short, focused, face-to-face meetings.
- Proposed by (any) IETF participants.
- Chaired by 2-3 voluntary chairpersons.
- Driven by a restrictive public charter with milestones.
- The WG is closed when the charter is accomplished.
Birth of a Working Group

refine with community: chair, description, goals and milestones
Birth of a Working Group

refine with community: chair, description, goals and milestones

BOF

Area Director
Birth of a Working Group

refine with community: chair, description, goals and milestones

BOF → Area Director → IESG
Birth of a Working Group

1. BOF
2. Area Director
3. IESG
4. WG creation

Refine with community: chair, description, goals and milestones.

Check IAB + IETF
Work in a WG

- The WG tools are the **mailing list** (list) and **Internet-Drafts** (I-Ds).
 - The WG’s list is public, open, and free.
 - I-Ds are public, open, and free and developed to fulfil the charter.
- The WG produces **Request For Comments** documents (RFCs).
 - When consensus is reached on the quality of an I-D, it is proposed for RFC publication.
 - RFCs are archival publications
 - never changed once published,
 - updates are issued in new RFCs.
Short face-to-face WG meetings during IETF meetings to address specific issues rose on the mailing list.

Assume people read the mailing list and I-Ds before the meeting.

Sessions are streamed (for remote participation) and recorded (for archive).

Attendees sign the “blue sheets”

essential for openness.
Internet-Drafts (I-Ds)

- I-Ds are submitted with a fully automated process
 - i.e., no selection at entrance.
- Formatted in ASCII, (even figures), 72 columns.
 - first documents are still perfectly readable after 48 years!
- I-Ds files follow the draft-<source>-<document name>-<version> naming convention.
- I-Ds are versioned to track changes
 - any change requires a new version.
- An I-Ds expires 185 days after its posted date
 - unless a new version is provided.
- Any Intellectual Property Right (IPR) element must be disclosed.
Wording

- Documents and discussions are in technical english.
- Specific key words to indicate requirement levels (defined in RFC2119):
 - MUST/REQUIRED/SHALL (NOT)
 - absolute requirement.
 - SHOULD (NOT)/(NOT) RECOMMENDED
 - Can be not followed in some particular situations.
 - MAY/OPTIONAL
 - purely optional.
Anatomy of an RFC*

Some required sections:

- Boilerplate
 - with licence (Simplified BSD License).
- Security Considerations.
- IANA Considerations.
- References
 - split into normative and informative sections.
- Author’s address.

Not all RFCs are standards (e.g., jokes, historical, process…).

* as of this date
Standards Track RFCs

- Best Current Practices (BCP)
 - policies and procedures corresponding to the best known way to do.

- Proposed standard (PS)
 - good idea.

- Internet standard (STD)
 - good idea proven to be stable and to benefit the Internet community.
 - Multiple interoperability tests to attest the document clarity.
Other RFCs

- Informational.
- Experimental.
- Historical.
- Some RFCs are not from IETF (e.g., IRTF)!
The long road to RFC
The long road to RFC
The long road to RFC

Individual I-D.
draft-ietf-doe-protocol-name-vv
The long road to RFC

Individual I-D.
draft-ietf-doe-protocol-name-vv
refine with
WG discussions
The long road to RFC

Individual I-D.
draft-ietf-doe-protocol-name-vv

refine with
WG discussions

WG consensus
for adoption
The long road to RFC

- Individual I-D.
 draft-ietf-doe-protocol-name-vv

 refine with
 WG discussions

 → WG consensus for adoption

 → WG I-D.
 draft-ietf-wg-protocol-name-vv
The long road to RFC

- Individual I-D. (draft-ietf-doe-protocol-name-vv)
 - refine with WG discussions
- WG consensus for adoption
- WG I-D. (draft-ietf-wg-protocol-name-vv)
 - refine with WG discussions
The long road to RFC

Individual I-D.
draft-ietf-doe-protocol-name-vv

refine with WG discussions

WG consensus for adoption

WG I-D.
draft-ietf-wg-protocol-name-vv

refine with WG discussions

WG last call
The long road to RFC

1. Individual I-D. (draft-ietf-doe-protocol-name-vv)
 - Refine with WG discussions

2. WG consensus for adoption

3. WG I-D. (draft-ietf-wg-protocol-name-vv)
 - Refine with WG discussions

4. Technical and process review by AD

5. WG last call
The long road to RFC

Individual I-D.
draft-ietf-doe-protocol-name-vv

refine with WG discussions

WG consensus for adoption

WG I-D.
draft-ietf-wg-protocol-name-vv

refine with WG discussions

Technical and process review by AD

IETF last call

WG last call
The long road to RFC

Individual I-D.
draft-ietf-doe-protocol-name-vv

refine with WG discussions

WG consensus for adoption

WG I-D.
draft-ietf-wg-protocol-name-vv

refine with WG discussions

IESG interdisciplinary technical review

IETF last call

Technical and process review by AD

WG last call
The long road to RFC

Individual I-D. draft-ietf-doe-protocol-name-vv
refine with WG discussions

WG consensus for adoption

WG I-D. draft-ietf-wg-protocol-name-vv
refine with WG discussions

IESG interdisciplinary technical review

RFC Editor edition

IETF last call

Technical and process review by AD

WG last call
The long road to RFC

Individual I-D.
draft-ietf-doe-protocol-name-vv

refine with
WG discussions

WG consensus for adoption

WG I-D.
draft-ietf-wg-protocol-name-vv

refine with
WG discussions

Technical and process review by AD

IESG interdisciplinary technical review

IETF last call

RFC Editor edition

RFC ZZZZ

WG last call
The long road to RFC

Individual I-D.
draft-ietf-doe-protocol-name-vv
refine with WG
discussions

WG consensus for adoption

WG I-D.
draft-ietf-wg-protocol-name-vv
refine with WG
discussions

Takes between 1 and 3 years

IESG interdisciplinary technical review

RFC Editor edition

IETF last call

Technical and process review by AD

RFC ZZZZ
Around IETF

- Internet Research Task Force (IRTF)
 - aims to explore long term work related to Internet technologies,
 - composed of Research Groups.

- Internet Assigned Number Authority (IANA)
 - assigns number and keep track of them (e.g., ports, top level domains...)
 - RFCs MUST include an IANA Considerations section.
The software networking approach is changing everything!

Standardisation vs Softwarisation

- Standards Development Organization (SDO) (e.g., IETF, ITU-T) drive networking industry since 40 years.
 - Well established gouvernance.

- Open Source Software (OSS) projects produce softwares.
 - No gouvernance.
Time scales

- 2+ year to draft paper specifications in SDOs.
 - Consensus is hard to get,
 - validation is tedious.
- 1 year to think, design and implement a software in OSS.
 - Focus on one technical objective.
The risks with SDOs

- SDOs governance provides
 - efficient integrated development and maintenance processes,
 - broad and long term vision of the problem
 - concentration of efforts.
- SDOs are old gigantic institutions
 - averse to changes,
 - slow to react,
 - hard to enter for new actors.
The risks with OSS

- OSS are agile and quickly respond to needs.
- OSS lack of governance causes security flaws,
 small fragmented communities (little funding, dogmatic vision),
 uncertainty of maintenance.
SDN pushes towards OSS

- Without SDN:
 - network algorithm implementations are bound to the device supporting them,
 - hardware and software producers are the same companies.
 - Hard for new actors to enter the market.

- With SDN:
 - network algorithm implementation are independent of the hardware,
 - hardware and software producers are different companies.
 - Any innovative actor can enter the market easily.

 ➤ Costs reduction.
SDN pushes towards OSS

- Without SDN:
 - network algorithm implementations are bound to the device supporting them,
 - hardware and software producers are the same companies.

SDOs and OSS must form a collaborative loop

- hardware and software producers are different companies.
 - Any innovative actor can enter the market easily.

⇒ Costs reduction.
Computer networks and standardisation*

Damien Saucez (damien.saucez@inria.fr)
Inria

September 22nd 2016